
HEAT EXCHANGE IN A LAMINAR BUBBLE FLOW
ON THE INITIAL PORTION OF A PLANE CHANNEL

A. P. Vasil’ev UDC 536.24

Heat exchange on the initial portion of a plane channel with a laminar bubble flow under unstabilized-flow
conditions is calculated by the methods of boundary-layer theory. Results of these calculations are compared.
An analytical solution of the energy equation for stabilized flow is presented.

In channels of certain power installations for direct conversion of energy [1], there exists heat exchange in
bubble flows of a liquid metal; however, because of the lack of interest in such flows, methods for calculating the
heat exchange have not been developed.

We take the following model of a bubble flow: a viscous incompressible fluid is a carrier phase, and an ideal
incompressible gas is a dispersed phase; between these phases, thermal equilibrium is retained.

The integral relationships of momenta and energy for the entire mixture have the form

dδ∗∗

dx
 + (2δ∗∗  + δ∗ ) 

U1
′

U1

 + 
δ∗

ρ∗
 SS

′
 = 

τw

ρ1
0
U1

2
 , (1)

dδt.lr
∗∗

dx
 + δt.lr

∗∗
 

U1
′

U1 (x)
 + α1 

µ1

ρ1
0
c1U1 (x) Θ (x)

 ∫ 
0

δt.lr




du1

dy





2

 dy = 
qw

ρ1
0
c1U1 (x) Θ (x)

 . (2)

The thicknesses δ∗ , δ∗∗ , and δt.lr
∗∗  are determined by the equalities
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Calculation of the friction and heat exchange on the initial portion implies the application, in addition to Eqs.
(1) and (2), of the laws of conservation of mass and heat flux, provided that the profiles of velocities and temperature
are known. These profiles can be selected by satisfying the following conditions on the wall and on the outer bound-
ary of the dynamic and thermal boundary layers [2]:
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Let us assume that the content of the gas phase α2 is independent of the transverse coordinate y, which is
valid in the absence of transverse forces (of Zhukovskii or Magnus) acting on a bubble on the source side of the car-
rier phase. In this approximation, from the mass-flow-rate equation written for the running cross section of the chan-
nel, we find the law of change of the velocity in the potential part of the flow:
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Now we calculate the characteristics of the dynamic boundary layer, introduce the new variables η = (δ ⁄ a)2

and ζ = x/L, and reduce Eq. (1) to the form
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The initial conditions for Eq. (5) will be specified in the following form: ζ = 0 and η(ζ)  = 0. The Reynolds number
is here determined by the equality Re = aU1(0) ⁄ ν1

0.
Equation (5) describes the development of the dynamic boundary layer on the initial portion and it can be in-

tegrated irrespective of Eq. (2). Separating the variables in Eq. (5) and taking into account that the boundary layers
converge (δ = a) at the end of the dynamic initial portion ζ = 1, we obtain
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The length of the initial dynamic portion turns out to be equal to
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Calculation of the integral gives
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Setting α2 = 0 in Eq. (6), we find the length of the dynamic initial portion in the single-phase flow Ldyn/(2a
Re) = 0.086. If in this expression we determine the Reynolds number from the equivalent diameter, then the relative
length of the dynamic-stabilization portion will turn out to be equal to Ldyn/(2a Red) = 0.043, which is about four
times larger than the calculation results obtained in [3]. Unfortunately, in [3] nothing has been said of the method used
for determining the length Ldyn; therefore, it is impossible to explain this discrepancy. The results of calculations ac-
cording to the Targ method (Lin/(2a Re) = 0.09) are given in [4]. As is evident, the selected velocity profile describes
quite accurately the dynamics of development of a viscous boundary layer.

Of interest is also the problem on pressure loss on the portion of dynamic stabilization of the flow (the pres-
sure loss will be taken to mean only the dissipative component). The calculations performed on the basis of Eq. (6)
lead to the following expression for the pressure loss on the initial portion:
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In this expression, the value of the integral is equal to 7.705.
The relation η = η(ζ)  makes it possible to calculate the development of the thermal boundary layer on the

initial portion. It should be borne in mind that the thermal core of the flow is not involved in the heat exchange until
the thermal boundary layers converge. We consider the case where the thermal boundary layer is buried in the dy-
namic layer, i.e., δt.lr < δ and Lt.lr > Ldyn.

Let us calculate the following quantities characterizing the thermal boundary layer:
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where h = δt.lr
 ⁄ δ < 1, and transform Eq. (2) at z = h2 to the form
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The Re, Pe, and Ec numbers are determined from the conditions at the channel inlet:
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Expressions (5) and (7) form a system of differential equations describing the development of the dynamic
and thermal boundary layers on the initial channel portion to the point of convergence of the thermal boundary layer
for the case where the thermal layer is buried in the dynamic layer.

The initial conditions for the functions sought are as follows: z(ζ), η(ζ) :ζ = 0, z(0) = 1, and η(0) = 0.
The system of equations (5) and (7) was integrated numerically. The solutions of this system converted to the

thicknesses of the dynamic and thermal boundary layers are presented in Fig. 1. The initial data for calculation were
as follows: channel height 2a = 0.02 m, velocity of the carrier phase (water) at the channel inlet U1(0) = 0.05 m/sec,
volume gas content α2 = 20%, Re = 1695, Pe = 4346, Ec = 6⋅10−9 at Θ = 100oC, λ1 = 0.683 W/(m⋅K), c1 = 4220
J/(kg⋅K), v1

0 = 0.296⋅10−6 m2/sec, Ldyn = 1.934 m, and S = 1. The behavior of the curves in Fig. 1 shows that the
thickness of the thermal boundary layer is smaller than that of the viscous boundary layer.

It is of greatest interest to elucidate the behavior of the heat-transfer coefficient on the portion of dynamic
stabilization of the flow. Indeed, the heat-flux density on the tube wall can be calculated according to the Fourier heat-
conduction law with the use of the coefficient of effective thermal conductivity of the bubble structure:

λ1
0

λeff
 = 1 + 

3

2
 







1 − 

λ2
0

λ1
0







 α2

1 − 






1 − 

λ2
0

λ1
0







 

3√9π16
 α2

2

 .

For the heat-flux density on the channel wall we find
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On the other hand, the density can be determined according to the Newton–Richmann law qw = −β(x)Θ (Θ remains
constant until the thermal boundary layers converge). Equating these expressions, for the local thermal-conductivity co-
efficient and the Nusselt number (Fig. 2) we find

Fig. 1. Dependence of the thickness of the dynamic δ ⁄ a and thermal δt.lr
boundary layers on the length ζ = x/L on the initial portion of the plane chan-
nel (the content of the gas phase in the flow is α = 20%).

Fig. 2. Dependence of the local Nusselt number Nu on ζ on the initial portion
of dynamic stabilization of the flow, α = 20%.
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One drawback of the velocity profile (3) is that after the completion of the dynamic stabilization flow it does
not become the Poiseuille–Hagen profile. Thus, the mean flow velocity on the Poiseuille–Hagen profile is equal to v
= (2/3)Umax, while Eq. (3) gives a value of v = (7/12)Umax, i.e., somewhat lower. We calculate the development of
the thermal boundary layers on the portion x 2 [Ldyn; Lt.lr]. The flow on this portion is stabilized, the dynamic bound-
ary layers are converged, and δ = a (η = 1); therefore, the hydrodynamic processes no longer affect the thermal ones
and Eq. (7) becomes independent. Setting η = 1, we rewrite Eq. (7) in the form
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The initial conditions for the function sought are z(0) = z0, where z0 is the solution of Eq. (7) at the point of conver-
gence of the dynamic boundary layers, i.e., at ζ = 1 (this parameter depends on both the gas content and the Pe num-
ber). In Eq. (8), the origin of the independent variable ζ is counted off from x = Ldyn.

By virtue of the smallness of the Eckert number, the heat release due to viscous dissipation in Eq. (8) can be
neglected; then, upon integration, we find
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Since the portion of thermal stabilization of the flow ends at z = 1, with account for the previous equality for its
length we obtain
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Thus, for the single-phase flow z = z0 = 0.957, we have the function I(1, z0) = 0.036, and the calculation of the length
of the thermal initial portion gives the value Lt.lr/(2a Pe) = 0.00293, Pe = 2960. In [3], the value of Lt.lr

 ⁄ (deq Pe) =
0.0138 is given for the length of the thermal initial portion, i.e., a fourfold discrepancy is observed. For the two-phase
flow with the above-indicated initial data the calculations give the following values: z0 = 0.567, Lt.lr/(2a Pe) = 0.031,
Pe = 4346; the absolute length of the thermal initial portion increases with increase in the gas content. It should be
noted that this length is sensitive to the thermal conductivity of the dispersed phase.

Noteworthy is the fact that after the completion of the dynamic stabilization of the flow the character of
growth of the thickness of the thermal boundary layer changes and becomes almost linear (Fig. 3, the length of the

Fig. 3. Dependence of the reduced thickness of the thermal boundary layer
δt.lr

 ⁄ a and the function z = (δt.lr
 ⁄ δ)2 on ζ on the portion of thermal stabiliza-

tion of the flow, α = 20%.
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thermal initial portion was taken to be equal to Lt.lr(2aPe) = 0.031). The total length of the portion of thermal stabi-
lization of the flow (from the channel inlet) is determined by the equality
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The function z = (δt.lr
 ⁄ a)2 makes it possible to calculate the dependence of the local Nusselt number Nu(ζ)

on the considered portion. The calculations show a continuous decrease in the heat-transfer coefficient and in the
Nusselt number to a value of Nu = 3 at the point of convergence of the thermal layers; this fact is explained by the
growth in the thickness of the thermal boundary layer along the flow.

Let us calculate the thermal boundary layer for the case δt.lr > δ where the dynamic boundary layer is buried
in the thermal boundary layer and, consequently, Ldyn > Lt.lr. This situation occurs, for example, in two-phase liquid-
metal flows.

The equation of the dynamic boundary layer (5) holds true under these conditions, too, while Eq. (2), upon
calculating all the characteristics of the thermal boundary layer with account for the inequality δ(x) < δt.lr(x) and for the
neglect of the volume heat release due to viscous dissipation, is reduced to the form (h = δt.lr
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The system of equations (5) and (9) for the dynamic and thermal boundary layers under the considered con-
ditions can be integrated numerically. The initial conditions for the functions η(ζ)  and h(ζ) are specified in the form
ζ = 0, η(ζ)  = 0, and h(ζ) = 1.

Figure 4 illustrates the solutions of (5) and (9) converted to the relative thicknesses of the dynamic and ther-
mal boundary layers. As the carrier phase we selected liquid-metal gallium with α2 = 20% for a = 0.01 m and L =
Ldyn = 3.272 m. The thermophysical characteristics of liquid gallium were prescribed at Θ = 300oC and were equal to
ν = 1.743⋅10−7 m2/sec, ρ = 5095 kg/m3, λ = 13 W/(m⋅oC), and c = 1300 J/(kg⋅oC). The criteria of the problem were
Re = 2869 and Pe = 295.

From Fig. 4 it follows that on the initial channel portion the thermal boundary layer (δt.lr
 ⁄ a), grows very rap-

idly, while the dynamic boundary layer grows smoothly (δ ⁄ a), so that thermal stabilization is completed almost near
the inlet cross section of the channel Lt.lr = 0.

Fig. 4. Dependence of the thickness of the thermal δt.lr
 ⁄ a and dynamic δ ⁄ a

boundary layers on ζ on the initial portion (the dynamic layer is buried in the
thermal layer), α = 20%.

1392



After the convergence of the thermal boundary layers, the temperature on the flow axis begins to change.
After the calculation of the convective flows and integration of the resulting equation, from the heat-balance equation
dQ(x)/dx = qw we find the law of change of the temperature on the flow axis:
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Figure 5 shows the dependence of the reduced temperature Θ∗  = Θ(y)/Θ(0) on the variable η = (δ ⁄ a)2 and,
for the convenience of passage to the longitudinal coordinate ζ, the plot of the function ζ = ζ(η) . In the calculations
it was assumed that η0 = 0. The other data corresponded to those given above.

After the convergence of the thermal boundary layers, the Newton–Richmann law is characterized by the
mass-mean temperature (mixing temperature)
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1 and m
.

2 are the mass flow rates of the phases. In calculating, it was taken into account that ρ∗  > 1.
The local heat-transfer coefficient and the Nusselt number determined from the mass-mean temperature are as

follows:
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Fig. 5. Dependence of the reduced temperature Θ∗  = Θ(η)/Θ(0) and the re-
duced longitudinal coordinate ζ = ζ(η)  on the square of the reduced thickness
of the dynamic boundary layer η = (δ ⁄ a)2.

Fig. 6. Dependence of the local Nusselt number Nu on ζ (the flow is dynami-
cally stabilized).
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In particular, after the convergence of the dynamic boundary layers (δ = a) the Nusselt number ceases to change along
the channel length and it is equal to Nu = 2.413 (Fig. 6).

Now we investigate the conditions that ensure a particular scheme of development of the thermal boundary
layer. We consider the case where δt.lr < δ. Let the function z(ζ) from Eq. (7) be decreasing over the entire interval
ζ 2 [0; 1]. To do this requires the derivative dz/dζ < 0. Applying this condition to the right-hand side of Eq. (7) at the
point ζ = 0 and taking into account that z(0) = 1, we obtain the following condition:

Pr = 
Pe
Re

 > Prcr = 
5
2

 
1 − 

3
2

 α

1 + α
 .

Thus, for Pr > 5 ⁄ 2 (in the case of the single-phase flow) the scheme of development of the boundary layers
in which δt.lr < δ will be implemented, whereas for Pr < Prcr, the scheme with δt.lr > δ will be implemented (for the ve-
locity and temperature profiles taken in the boundary layers).

Now we consider the problem on the influence of the two-phase structure of the flow on the development of
the boundary layers on the initial portion of the channel.

Figure 7 presents results of the calculation of the thicknesses of the dynamic and thermal boundary layers for
the single- and two-phase flows with α = 20%. The calculations were performed with L = Ldyn; the convergence of
the dynamic two-phase boundary layer was observed at ζ = 1; the boundary layers in the single-phase flow continued
to thicken, i.e., the length of the dynamic initial portion of the single-phase flow was larger than the length of the
two-phase flow.

It is evident from the plots that the thickness of the dynamic two-phase boundary layer (curve 1) is larger
than the thickness of the dynamic single-phase boundary layer (curve 2) and grows more rapidly than that of the latter.
This rate of growth of the thickness can be explained by the higher effective viscosity of the two-phase flow com-
pared to the single-phase flow. Indeed, from the formula µeff = µ1

0(1 + α2) it follows that with increase in the volume
gas content of the dispersed phase, the effective flow viscosity increases, thus causing the above phenomenon. How-
ever, the thickness of the thermal single-phase boundary layer (curve 3) exceeds that of the two-phase layer (curve 4)
and has a high rate of growth, which can be explained by the higher value of the thermal-conductivity coefficient of
the single-phase flow compared to that of the two-phase flow, in view of which the Pe′clet number, controlling the rate
of growth in the thermal boundary layer, turns out to be smaller in the single-phase flow. Because of this, the right-
hand side of the equation for the thermal boundary layer becomes larger in the case of the single-phase flow, thus de-
termining the increase in the growth rate of the thickness of the thermal boundary layer precisely in this flow. In a
qualitative sense, this pattern is explained by the fact that the temperature field in the single-phase flow diffuses more
rapidly than in the two-phase flow, wherein the presence of gas inclusions with a low thermal conductivity retards the
process of diffusion of heat. The distribution pattern is reversed if the thermal conductivity of the material of inclu-
sions exceeds that of the carrier phase: in this case the thickness of the thermal boundary layer in the two-phase flow
turns out to be larger than in the single-phase flow.

Fig. 7. Reduced thickness of the dynamic (curves 1 and 2) and the thermal
(curves 3 and 4) boundary layers as a function of ζ on the portion of dynamic
stabilization of the flow: 2 and 3 are the single-phase layers; 1 and 4 are the
two-phase layers.
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It should also be noted that the heat-transfer coefficient β is higher in the single-phase flow than in the two-
phase flow: the dispersed phase leads to a decrease of about 30% in it under the conditions of the example described.

Now we consider the calculation of β for dynamically stabilized flow. When x < 0, the channel walls of
height 2a are adiabatically insulated, whereas when x ≥ 0, their temperature changes abruptly and becomes equal to
Tw > Tliq.

The stationary problem of convective heat exchange is described by the energy equation which can be written
for each of the phases as:

ρ1c1 (v1⋅∇)  θ = λ1∇
2θ ,   ρ2c2 (v2⋅∇)  θ = λ2∇

2θ . (10)

Let us assume that the longitudinal velocities for each of the phases in stabilized flow are described by the
following profiles:

u1 (y) = U1 

1 − 



y
a




 2



 ,   u2 (y) = U2 


1 − 



y
a




 2



 .

If we neglect the heat flux along the channel due to molecular heat conduction compared to the heat flux due
to convection (which is true at large Pe′clet numbers), we can discard the second derivative with respect to the variable
x on the right-hand side of the energy equation. Then, combining Eqs. (10) and introducing the notation λeff =
λ1 + λ2, for Pe = U1a ⁄ aeff and

aeff = 
λeff

α1 ρ1
0
c1 






1 + 

ρ2
0

ρ1
0
 
α2

α1

 
c2

c1

 S







we have




1 − 



y
a




 2



 
∂θ

∂x
 = 

a

Pe
 
∂2θ

∂y
2
 . (11)

Equation (11) will be solved by the method of separation of variables; to do this, we represent the function sought in
the form θ = (x, y) = ϕ(x)ψ(y) and, having substituted it into Eq. (11), after separation of the variables we obtain

Pe
a

 
ϕ′ (x)
ϕ (x)

 = 
ψ′′  (y)




1 − 



y
a




 2


 ψ (y)

 = − l
2
 .

Equation (11) is reduced to the system of two ordinary differential equations

ϕ′ (x) + 
a

Pe
 ϕ′ (x) l2 = 0 ,   ψ′′  (x) + 


1 − 



y
a




 2



 ψ (y) = 0 . (12)

The solution of the first equation of (12) is the function

ϕ (x) = C exp 



− 

al
2

Pe
 x



 ,

where C is the integration constant to be determined.
We will seek the solution of the second equation of (12) in the form of the sum of a power series which is

symmetric about y:
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ψ (y) = A0 + A2 


y
a




2

 + A4 


y
a




4

 + ... + A2k




y
a




2k

 =  ∑ 

p=0

k

 A2p 


y
a




2p

 ,

ψ′′  (y) = 
1

a
2  ∑ 

p=0

k

 2p (2p − 1) A2p 


y
a




2p−2

 .

We substitute these series into Eq. (12) and introduce the notation γ = a2l2; then, comparing the coefficients y/a of the
same power, we obtain the following system of recurrence equations for determining the unknown coefficients:

1⋅2A2 + γA0 = 0 ,

3⋅4A4 + γA2 − γA0 = 0 ,

5⋅6A6 + γA4 − γA2 = 0 ,

..........................................

(2k − 1)⋅2kA2k + γA2k−2 − γA2k−4 = 0 .

The coefficient A0 is set equal to 1; then from this system we can successively find all the other coefficients of the
series:

A2 = − 
γ

1⋅2
 ,   A4 = 

γ
3⋅4

 



1 + 

γ
1⋅2




 , ...

i.e.,

A2p = 
γ

(2k − 1)⋅2k
 (A2k−4 − A2k−2) . (13)

Consequently, the particular solution of Eq. (12) has the form

θ (x, y) = C exp 



− 
γ

Pe
 
x
a



  ∑ 

p=0

k

 A2p 


y
a




2p

 . (14)

The general solution of Eq. (11) will be sought in the form of an infinite sum of the particular solutions (14):

θ (x, y) =  ∑ 

n=0

∞

 θn (x, y) =  ∑ 

n=0

∞

 Cn exp 



− 
γn

Pe
 
x

a




  ∑ 

p=0

k

 A2p 




y

a




2p

 . (15)

The separation constant γ will be determined from the boundary conditions of the first kind on the channel
walls (isothermal walls) y = %a and θ(x, a) = 0, which results in the equation 

A0 + A2 + ... + A2k = 0 . (16)

Substituting here the coefficients of the series expressed by the unknown γ, we obtain the algebraic equation of the kth
degree relative to the unknown γ with real coefficients.

According to the main theorem of algebra, such an equation has exactly k roots and some of them will be
complex-conjugate. Of all the roots of Eq. (16), we select only the real positive roots, since only these roots ensure
the condition of convergence of the solution at positive infinity. Let there be m such roots, m ≤ k.
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We find the coefficients Cn of series (15). To do this we turn to the conditions at the channel inlet: when x
= 0, θ(0, y) = ΘF(y/a). Here F(y/a) is the prescribed function which is even relative to y and Θ is the excess tem-
perature on the flow axis. We expand the function F(y/a) in a Taylor series:

F 


y
a



 = F (0) + 

F
′′
 (0)
2!

 


y
a




2

 + 
F
(4)

 (0)
4!

 


y
a




4

 + ... ,   F (0) = 1 .

When x = 0, the solution (15) takes the form

θ 

0, 

y
a



 =  ∑ 

n=0

∞

 Cn  ∑ 

p=0

k

 A2p 


y
a




2p

 = Θ 



1 + 

F
′
 (0)
1!

 
y
a

 + 
F
′′
 (0)
2!

 


y
a




2

 + ...



 ,

or, changing the order of summation, we rewrite it as follows:

  ∑ 

p=0

k

 


y
a




2p

  ∑ 

n=0

m

 CnA2p (γn) = Θ  ∑ 

p=0

k

 
F
(2p)

 (0)
(2p) !

 


y
a




2p

 .

Whence we obtain the following linear system of equations for determining the unknown coefficients Cn:

C0⋅1 + C1⋅1 + ... + Cm−1⋅1 = Θ ,

C0⋅A2 (γ0) + C1⋅A2 (γ1) + ... + Cm−1⋅A2 (γm−1) = 
F
(2)

 (0)
2!

 Θ ,

......................................................................................................,

C0⋅A2k (γ0) + C1⋅A2k (γ1) + ... + Cm−1⋅A2k (γm−1) = 
F
(2k)

 (0)
(2k) !

 Θ .

We separate linearly independent equations (m × m matrix) and will count off the subscript m from unity and not from
zero; then the system of linear equations is conveniently written as follows:

C1 + C2 + ... + Cm = Θ ,

C1⋅A2 (γ1) + C1⋅A2 (γ2) + ... + Cm⋅A2 (γm) = 
F
(2)

 (0)
2!

 Θ ,

............................................................................................,

C1⋅A2m−2 (γ1) + C1⋅A2m−2 (γ2) + ... + Cm⋅A2m−2 (γm) = 
F
(2m−2)

 (0)
(2m − 2) !

 Θ .

Let ai,j = A2i−2(γj) be the elements of the matrix A = Nai,jN, i ≤ m and j ≤ m, and B be the vector composed of the
right-hand sides of the system of equations; then its solutions can be represented in matrix form: C∗  = A−1B ⁄ Θ, where
A−1 is the inverted matrix.

With account for the coefficients obtained, the solution of (11) takes the form

θ∗  (x, y) = 
θ (x, y)
Θ

 =  ∑ 

n=1

m

 Cn
∗
 exp 




− 
γn

Pe
 
x

a




  ∑ 

p=0

k

 A2p 




y

a




2p

 .
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We calculated the density of the heat flux on the wall according to the Fourier heat-conduction law:

qw = − λeff 
∂θ
∂y



 y=a

 = − 4λeff 
Θ
2a

  ∑ 

n=1

m

 Cn
∗
 exp 




− 
γn

Pe
 
x

a




  ∑ 

p=1

k

 pA2p (γn) .

On the other hand, the same heat flux can be represented according to the Newton–Richmann law as qw = β∆t. The
value of the coefficient β will, obviously, depend on the way of selecting the characteristic temperature difference be-
tween the wall and the flow.

Thus, when ∆t = Θθ∗ (x, 0), i.e., in selecting the maximum temperature head between the wall and the flow
axis, the heat-flux density turns out to be equal to

qw = − Θθ∗  (x, 0) = − Θ  ∑ 

n=1

m

 Cn
∗
 exp 




− 
γn

Pe
 
x

a




 ,

and for the Nusselt number we obtain the following expression:

Numax = 
βmax2a

λeff
 = 4 

∑ 

n=1

m

 Cn
∗
 exp 




− 
γn

Pe
 
x

a




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k

 pA2p (γn)
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n=1

m

 Cn
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


− 
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x

a





 .

By selecting the mass-mean temperature

θ
__

 = 
Θ
a

 ∫ 
0

1

θ∗  (x, ε) (1 − ε2) dε = 
2

3
 
Θ
a

  ∑ 

n=1
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

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
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
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p=1
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(2p + 1) (2p + 3)







 ,

as the determining one, from the equality qw = βθ
__

 we find the Nusselt number:

Nu = 
β2a

λeff
 = 6 
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(2p + 1) (2p + 3)








 .

The results of calculation of the Nusselt number over the channel length are presented in Fig. 8. The initial data for
the calculation were identical to those given in Fig. 1. We had Re = 1689 and Pe = 4346. The initial distribution of

Fig. 8. Dependence of the Nusselt numbers Nu and Numax on x/2a on the in-
itial thermal portion (the flow is dynamically stabilized).
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the excess temperature Θ in the flow was taken to be uniform. We solved Eq. (16) for k = 8 (when the degrees of
the equation are higher the expenditure of computer time is unjustifiably large); here, two real roots, γ1 = 2.827 and
γ2 = 27.23, were obtained. The coefficients Cn

∗  reduced to the maximum temperature head at the channel inlet were
C1
∗  = 1.116 and C2

∗  = −0.116 under these conditions. The behavior of the Nusselt number on the channel length is
qualitatively the same as in the case of calculation within the framework of the boundary-layer theory.

The largest Nusselt number in Fig. 8 corresponds to the mass-mean temperature, whereas the smallest Nusselt
number corresponds to the maximum characteristic temperature between the channel wall and the flow axis: Nu(∞) =
5.65 and Numax(∞) = 2.858. We should note that at infinity the Nusselt number is independent of the gas content.

It is of interest to compare the results obtained to those available in the literature. Thus, Nu = 5.95 calculated
from the mean-flow-rate temperature for the single-phase flow in a plane channel with isothermal walls is given in [5].
The calculation of the Nusselt number in the single-phase flow according to the method presented leads to a value of
Nu = 5.65. At the same time, the calculation performed according to the boundary-layer theory gives Numax = 3 (Fig.
3). The analytical solution results in Numax(∞) = 2.858. As we see, the agreement is quite satisfactory in both cases.

The two-phase structure of the flow has an effect primarily on the Pe′clet numbers of the problem, which de-
termine the length of the thermal initial portion of the channel (the presence of the dispersed phase leads to an in-
crease in this length).

NOTATION

δ, δ∗ , δ∗∗ , and δt.lr
∗∗ , boundary-layer, displacement, momentum-loss, and energy-loss thicknesses; S, coefficient

of slippage of the phases; ρi and ρi
0, reduced and true densities of the ith phase; ρ∗ , dimensionless density; ui and

Ui, local velocity and velocity on the flow axis of the ith phase; v, mean velocity; θ and Θ, local and maximum excess
temperatures; θ

__
, mass-mean temperature; ci, heat capacity of the ith phase; α, volume gas content; x and y, Cartesian

longitudinal and transverse coordinates; a, half-height of the channel; d, diameter; L, channel length; A1 and A2, profile
coefficients; J(y), I(1, z), and K(0, y), profile integrals; ∆P, pressure loss; τ, viscous friction stress; ζ and ε, reduced
longitudinal and transverse coordinates; η(ζ) , z(ζ), and h(ζ), functions of the boundary layers; Re, Pr, Pe, Ec, and Nu,
Reynolds, Prandtl, Pe′clet, Eckert, and Nusselt numbers; B, D, E, Φ, Ψ, and χ, functions of the system of boundary-
layer equations; µeff and µ1

0, effective and true dynamic viscosities of the carrier phase; ν, coefficient of kinematic vis-
cosity; λi

0 and λeff, true thermal conductivity of the ith phase and effective thermal conductivity of the mixture; q,
heat-flux density; Q, convective heat flux; β, heat-transfer coefficient; aeff, effective thermal-diffusivity coefficient; l,
separation constant; ϕ(x) and ψ(y), functions of the Fourier method; F(y), function assigning the temperature distribution
at the channel inlet; A, matrix of the coefficients in the system of equations; B, vector of the free terms of the equa-
tions of the system; Ck, Ak, and Ck

∗ , coefficients of the series; γk, roots of the characteristic equation; ∆t, characteristic
temperature; p, m, k, and n, natural numbers. Subscripts: i, phase subscript; i  = 1, carrier phase; i = 2, dispersed phase;
j, natural number; w, parameter on the channel wall; eff, effective parameter; ∗ , reduced parameter; t.lr, thermal bound-
ary layer; dyn, dynamic boundary layer; in, parameter of the initial portion; fr, friction; liq, liquid; d, diameter; eq,
equivalent; cr, critical; 0, initial value of the function; Σ, total value; max, maximum. Superscripts: 0, true parameter;
′ and ′′ , derivatives; ∗  and ∗∗ , parameters of the boundary layer.
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